


Data Center Evolution: Preparing for Al Workloads

Presented by Erik Gjesdal

Al Business Transformation

Al vs ML vs DL

Responsible Al

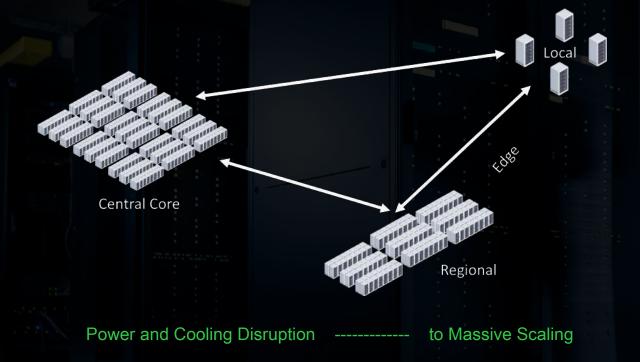
Today's Topic Al disrupts Data Centers

IT, Power, Cooling & Racks

Deployment

INFERENCE

DATA CENTER


SELF-DRIVING CARS

INTELLIGENT MACHINES

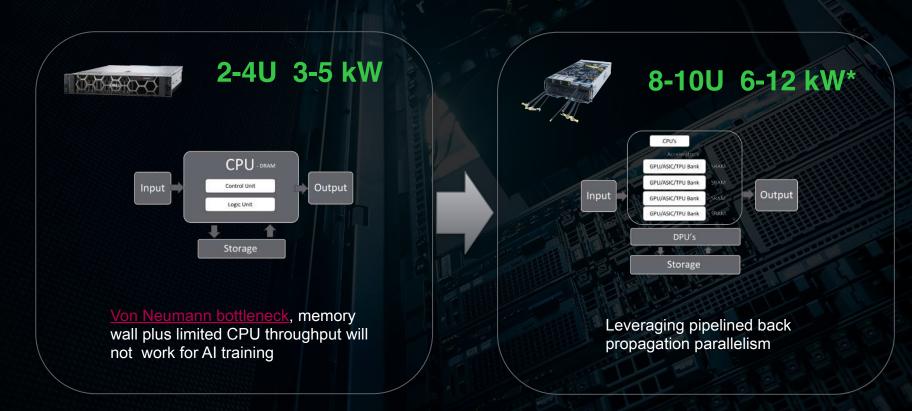
Workloads developed from scratch

Workloads use compressed models developed during training

Training in large facilities | Inference at the edge

Al is driving data center growth at core initially

- then the edge


SE Estimate	2023		2028	
Al Consumption for Al Workloads & Phys. Inf.	4.3 GW		13.5 - 18 GW	
AI, % of Total DC Power Consumption	8%	15 - 20%		%
Al Workload, Central vs. Edge	95% Central	5% Edge	50% Central	50% Edge

All Al data centers need to be deployed in a sustainable way

- Set a bold, actionable strategy
- Implement efficient data center designs
- Drive efficiency in operations
- Transition to renewable energy
- **Decarbonize** supply chain

Al Training requires new server components and architecture

Thermal design power (TDP) is trending upwards... Al Training

GPU	TDP (W)	TFLOPS (Training)	Performance over V100	TOPS (Inference)	Performance over V100
V100 SXM2 32GB	300	15.7	1X	62	1X
A100 SXM 80GB	400	156	9.9X	624	10.1X
H100 SXM 80GB	700	500	31.8X	2,000	32.3X

...leading to higher server densities

AI Training

Impractical to spread the load

Data Center Fabric network latency presents a constraint that drives up density

Longer network cable distance

Increased latency

Stranded chip performance
Increased training time
Lost opportunity cost

Al training racks are deployed in "clusters"

Legacy 800kW DC **100 – 150 Racks**

120-400kW

800kW AI Training DC 8 Racks

240-800kW

Al disrupts Data Centers

Chip

Server

Rack

Cooling

Electrical Distribution

Monitoring

POWERING AI servers in these dense applications has challenges

Challenge Guidance 120/208V distribution is impractical 415V distribution Small power distribution blocks waste space Increase block size Standard 60/63A rPDUs are impractical Multiple or custom rPDUs Arc flash risks complicate work practices Analysis & mitigation measures Load diversity increases tripping risks Design peak-to-average = 1 High rack temperatures increase risk of failures High-temp rated connectors

Challenges in **POWERING** Al servers in these dense applications **EXAMPLE**

POWERING AI servers in these dense applications has challenges

Challenge

Air cooling is not suitable > 20 kW

Customized designs complicate deployment

Unknown future TDPs risk obsolescence of designs

Inexperience complicates operation/maintenance

Liquid cooling increases risk of leaks in racks

Limited fluid options exist to operate sustainably

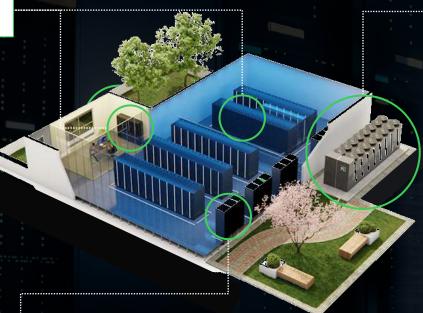
Guidance

Use liquid-cooled AI servers

Seek experts to assess design of proposed LC loads and facility

Design for both air and liquid cooling, and for ease of scalability

Seek experts to develop SOPs and MOPs for day-to-day operations

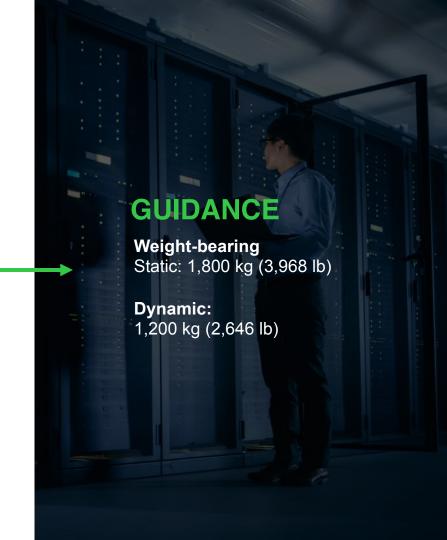

Perform pressure testing & apply leak detection + leak prevention

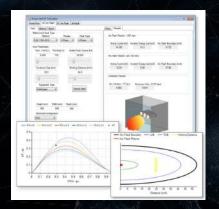
Use direct-to-chip with water to avoid GWP issues

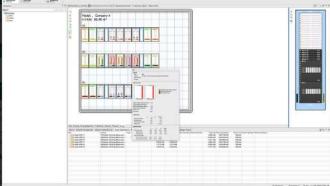
Liquid cooling architecture

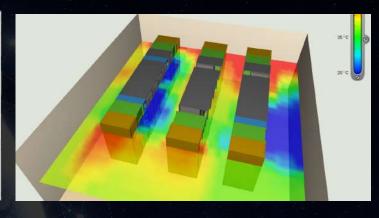
COMPLEMENTARY AIR COOLING

HEAT REJECTION UNITS


Standard RACKS present challenges in supporting AI applications


48U minimum height


750mm minimum width


1200mm minimum depth

SOFTWARE TOOLS help address AI challenges EXAMPLES

- Power design tool coordinates breakers and analyzes arc flash risk
- DCIM planning & modeling avoids exceeding available capacities

CFD ensures Al clusters don't impact nearby IT

Al driving disruption and scale

- Al will drive rapid growth in all sizes of data centers globally
- 2 Training Al disrupts physical infrastructure: power capacity, power distribution, cooling and racks
- The next big challenge is deploying large scale inference working models at the edge in a sustainable way

White Papers for DataCenter Operators Navigate the new landscape

WP67

28 reporting important metrics

White Paper 67: A Guide to Environmental Sustainability Metrics for Data Centers

Al: the game-changer for data center

White Paper 110: The Al Disruption. Challenges and Guidance for Data Center Design

Liquid cooling / Al workloads

White Paper 133: Liquid cooling distribution for high density / Al workloads

Life Is On Schneider