

AGENDA

- The proof-of-concept solution.
- The WEDSTRICT project and the operating demonstrator in Luleå,
 Sweden.
- Results from the operating demonstrator in Luleå with its heat recovery setup.

What was the task for RISE ICE datacenter in the WEDistrict project?

- Build a demonstration of liquid cooled edge that is quiet, low impact on the electrical grid and provides heat for direct use in adjacent buildings.
- The WEDistrict project enabled a proof-of-concept to be built in the north of Sweden.
- The concept used three containers:
 - 1. Storage of locally produced biogas of quality for automotive applications
 - 2. A network of solid oxide fuel cells to generate electricity and useful heat.
 - 3. A containerised, immersion system using repurposed Leopard (OCP) 400W servers.
- Challenging climate and location so if it could be achieved in Luleå it could be done anywhere!

LULEÅ (Sweden)

2 tonnes of biogas stored at 150 bar.

Covered trench with gas line, power and data.

Building with DH network

Fuel cell container with 9 fuel cells

Data centre container

Data Centre and Fuel Cell container setup

Inside the Fuel Cell container

Power production (SOFC)

This project has received funding from the European Union's Horizon 2020

research and innovation programme under grant agreement N°857801.

Water treatment (SOFC)

Immersion cooling setup and tests

Low density OCP Leopard servers with direct current (DC) bus connection.

- Replace thermal paste with thermal pads (indium and graphene testing)
- Removed all labelling from the servers (many sticky labels)
- Remove the 108 fans from 54 servers
- 2 x Power shelfs with 27kW (9 x 3kW PSUs) per shelf connected to a DC bus bar at bottom of tank
- 10.8kW per shelf, so low density.
- Used air cooled heat sinks (not optimal).

Inside the Data Center container

DC and FC container control (node red)

Fuel cell unit control (node red)

The demonstrator is monitored with long-term data storage in mind.

Data centre and fuel cells full operation

Data centre waste heat recovery power demand and production

Energy flows during monitored period.

Complete operational datasets from 11/01/2023 to 16/06/2023

Energy flows during monitored period.

Complete operational datasets from 11/01/2023 to 16/06/2023

Data from the immersed OCP servers.

- Immersion tank set point used was 45, 50 and 55 degrees centigrade.
- 54 OCP servers with the heat sinks for air cooling (use a lot of tank volume).
- CPU 2 is lower in the immersion tank than CPU 1 (108 x 120W CPUs).
- Statistics on the difference between the CPU and tank temperatures:

• Workload small:

	Tank temp (°C)	CPU 1 Avg (°C)	CPU 1 Std (°C)	CPU 2 Avg (°C)	CPU 2 Std (°C)
w	Setpoint of 45	18.646	1.23991	15.40541	0.99745
	Setpoint of 50	19.34378	1.191315	16.03665	0.948931
	Setpoint of 55	19.43984	1.3793	15.99343	1.172388

Tank temp (°C)	CPU 1 Avg (W)	CPU 1 Std (W)	CPU 2 Avg (W)	CPU 2 Std (W)
Setpoint of 45	79.16784	7.470789	77.33415	7.773683
Setpoint of 50	80.79432	7.078337	78.07464	7.284307
Setpoint of 55	80.3909	7.898025	77.94389	8.050226

Data centre waste heat recovery Some takeaways from the proof-of-concept.

- Current setup of the demonstrator demonstrated capability of recovering heat at up to 65°C with nearly -20 °C outside. Adding further insolation can improve this.
- The fuel cells are operating at approx. 55% electrical efficiency with the locally produced biogas.
- Immersion system shows a 15 °C to 20 °C difference between coolant and CPU case temperatures with tank operating comfortably at a 45°C setpoint even when using the original air-cooled heat sinks.
- General discussion points: Al workloads at the edge, island mode, partial hydrogen solution, noise levels, urban deployment, reduced load on electrical grid in urban areas.

Thanks for listening.

Dr Jon Summers

jon.summers@ri.se

+46 10 228 44 40

Thanks also to my colleagues at the RISE ICE datacenter and partners on the WEDISTRICT project.

