

SUSTAINABLE & INNOVATIOVE POWERSUPPLY FOR DATA CENTER

Questions to be asked

How big will your Data Centre be?

- □ On day one?
- □ When complete?
- □ What footprint do you have to work with?

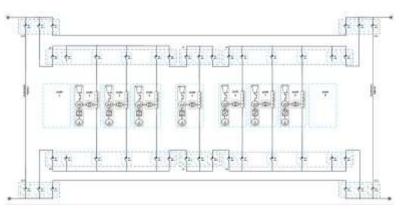
What is your priority?

- □ Reliability & Availability?
- □ Technology?
- □ Capex?
- □ Scalability?
- □ Opex?

Showcase 1: Energnist Esbjerg, 2000 kW Diesel UPS, battery free

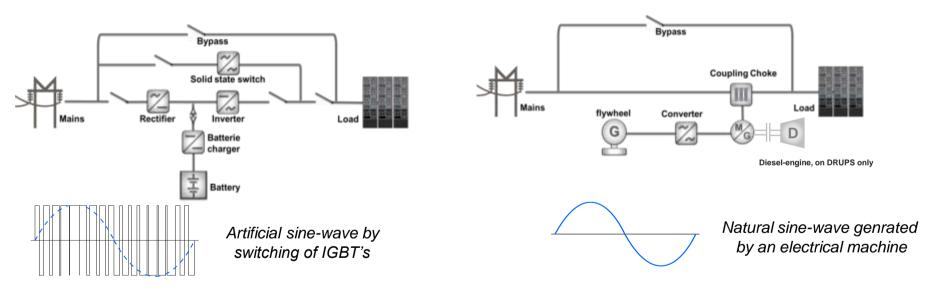
Key-points:

- □ Uninterruptible electrical power supply of 2000 kW
- Back-up of all sensitive and safety related functions
- Direct connetcion to 10 kV Medium Voltage level
- □ Short term energy source: flywheel
- □ Long term energy source: Diesel engine
- □ Highly efficient power supply for all sensitive loads
- Fully containerised DRUPS system
- Designed for a product lifetime of 25 years+
- □ Significant advantages in TCO to other UPS concepts
- Supply reliability more than 6 times above other UPS-concepts



Showcase 2: Nyt Odense University Hospital, 10 MW DRUPS, battery free

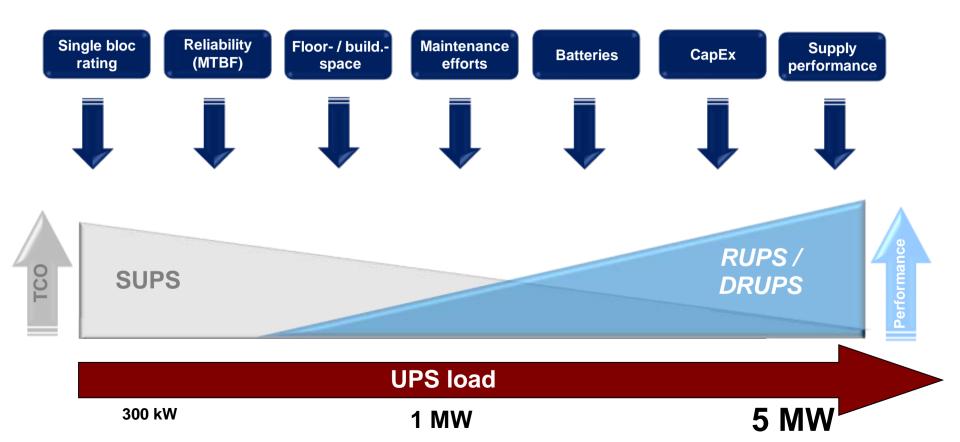
Key-points:


- Total power demand of 10 MW Diesel backed UPS for the complete hospital supply.
- **10** kV MV power supply as an internal transmission voltage
- **5** 5 different H.Q. power supply rings on the complete campus
- Step down transformer to 400 V inside the hospital buildings
- 2 groups with a common N+1 redundancy, as a swing unit,
 designed with 7 DRUPS, each rated to 1,8 kW single block power.
- □ All power supply equipment installed in a central building
- Design for a product lifetime of 25 years+
- □ Significant advantages in TCO to other UPS concepts
- □ Maximum reliability, by the responsibility to protect human life.

Fundamental UPS technologies

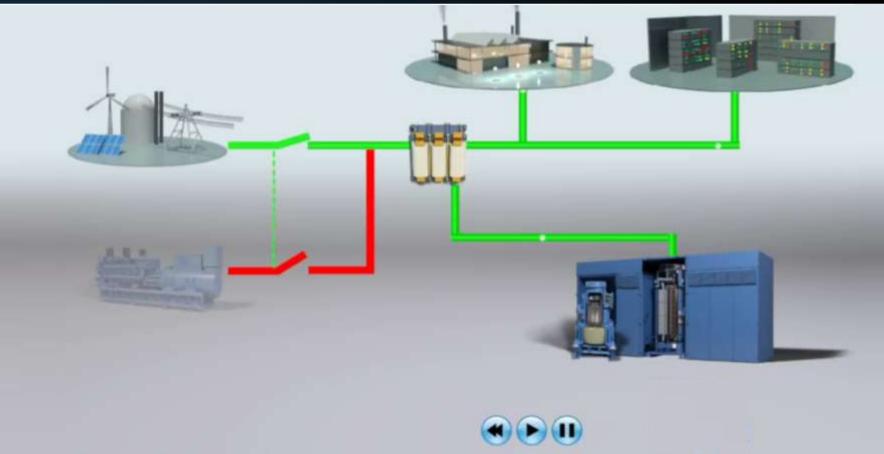
SUPS

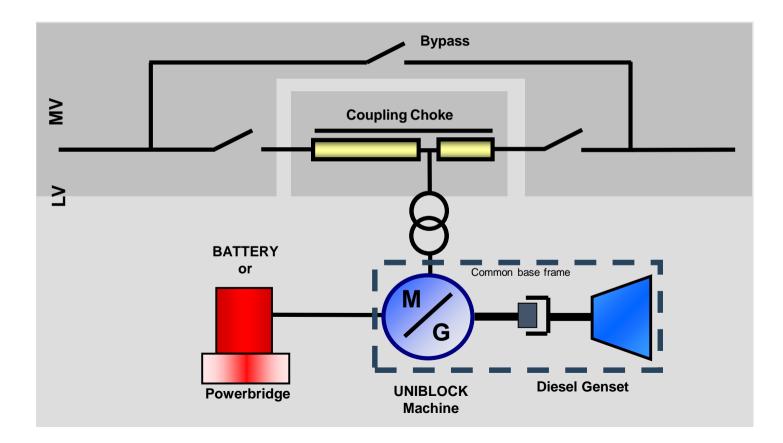
UNIBLOCK [DRUPS]


Limitation by power electronics
 Higher capacities by paralleling

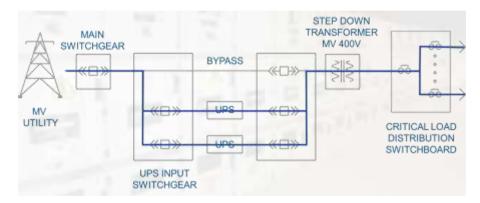
High single block ratings > 3MW

□ Advantageous supply performance data


UPS selection criteria's


RUPS function

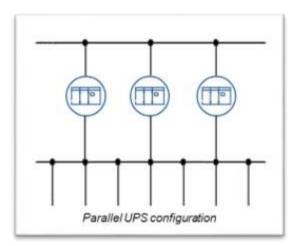
DRUPS architecture

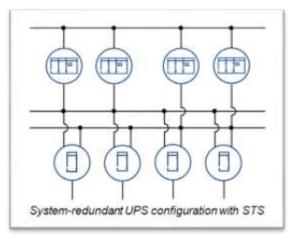


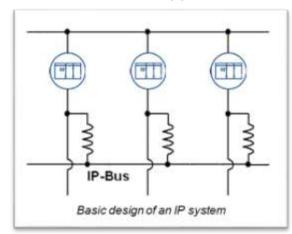
As data centres continue to get bigger, the future of Power at Scale is High Voltage. And this is how Piller does it....

- □ Cut power losses adds to green credentials
- Save infrastructure Capex
- MV achieves this without compromising reliability
- There is a limit beyond which Low Voltage cannot practically be used
- □ More systems means more infrastructure, more failures, more cost
- This limitation does not apply to Medium Voltage
- Renewables typically connected at MV thus a MV UPS & Energy Store fits naturally and optimises the entire system.

What level of power security do you need?


Ν
N+1
N+2
2N+1
UTI Tier III
UTI Tier IV

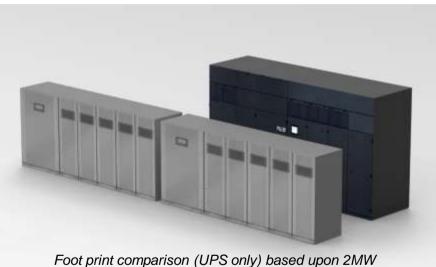



Power-critical facilities are tending to be larger and have an increasing number of sensitive loads, requiring more and more highly-reliable electrical power.

- Parallel UPS and System-redundant UPS configuration
- □ IP-Bus System UPS configuration
- □ Is there a benefit of HV over LV ?

UTI Tier IV approved

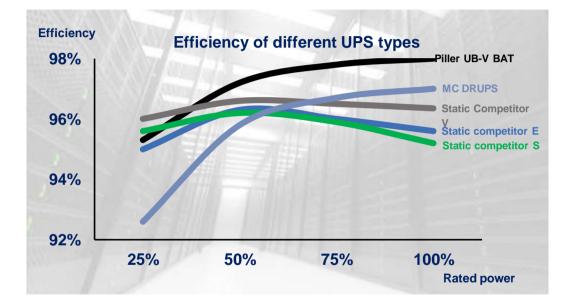
Direct Comparison between Key Technology Factors



Floorspace- (= Sustainability)

Foot Print

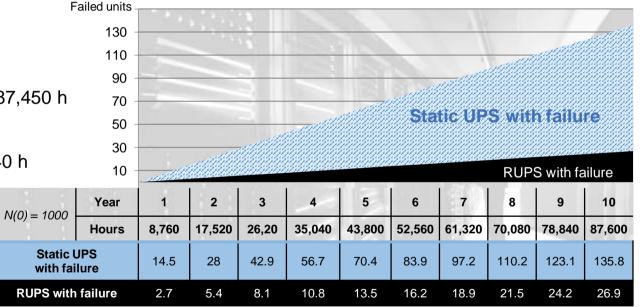
- Single unit (D)RUPS- design eliminates the need for multiple-paralleled power stages necessary in Static UPS
- Dever per square metre up to 20% higher
- □ No paralleling switchgear
- Space saving can be used to fit in more power, or
- To increase the white space and generate additional revenue


Foot print comparison (UPS only) based upon 2MW UB-V = 6,3m² Static = 8,1m²

Efficiencies – (= Sustainability)

Efficiency

- Modern Static UPS have good online efficiencies
- UB-V efficiency is better across the majority of nearly all load level
- □ UB-V has no internal paralleling
- □ Higher Static UPS efficiency possible;
 - by switching between alternate modes (e.g. ECO), but this introduces risk and is not normally adopted, or
 - By ramping down converter stages to maintain a high percentage of load but this reduces short circuit capability, that could affect sub-circuit discrimination



Reliability

MTBF

- □ MTBF is not related to lifetime
- MTBF traditional Static UPS 587,450 h (n+1 modules)
- □ MTBF RUPS system 3,217,440 h

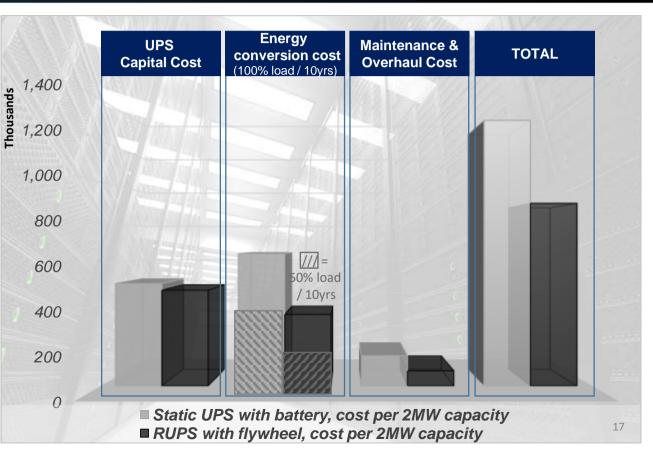
Failure rate = λ = 1/MTBF

Number of working units after time t:

In a 10 years' time period the likelihood for a failure is 5 times higher for a static UPS compared to the RUPS

 $N(t) = N(0) \times e^{-(\lambda \times t)}$

TCO Comparison 2MW Static vs RUPS


Isolated Redundant

Low maintenance

□ Low TCO

- High efficiencies with
 Redundancy
- Concurrent Maintainability

□ High Uptime / Availability

Total Cost of Ownership Factors

- 40MW Installation - 32MW duty capacity - 24MW operational load (60%) - over 10 year period	Distributed Redundant Static (40 x 1MW)	Distributed Redundant RUPS (20 x 2MW)
Footprint	246 sqm	200 sqm
Relative Capex (inc. Install and Li-Ion Battery)	100%	92%
Efficiency % (60% load)	96.2	96.9
Energy Loss Cost (60% Load @ 0,2 €/kWh)	16.608.960€	13.451.856€
Maintenance (incl. Fan / Caps & Batteries)	2.914.000€	1.722.000€

RUPS Energy + Maintenance cost savings over Static UPS = 4.349.104 € in 10 y

Regular Maintenance regime for Static UPS and comprehensive for UB-V Batteries generally the same for each system Currency is €uro

Conclusion - Piller makes the difference

Sustainability

- Higher efficiency than Static leading to significant energy savings – Carbon emission reduction
- More compact UPS means smaller building required for same power
- □ Less e-waste
- □ (D)RUPS are 95% recyclable to 85% Static

Savings

- □ Higher efficiency less electrical cost
- No Capacitor and Fan change required
- □ No UPS change on 25year mark
- Smaller building required

Simplicity

- Simplicity leads to higher reliability and significantly lower downtime.
- □ Significantly reduced component
- use of more robust components (Thyristor over IGBT)
- Elimination of failure prone components
 No Capacitor and Fans

Supply Chain

European manufactured

