

Lifecycle thermal optimization for data centers

INTRODUCTION

Michel GRABON

Carrier Senior Fellow & HVAC&R Systems

Data Center Vertical Director

Masters in Energy Engineering

70 patents (architectures, product design, heat transfer...)

34 years global experience

CARRIER WORLD – WHO ARE WE?

World leader in air conditioning, heating, ventilation, control and automation systems.

52 000 EMPLOYEES

BRANDS

100 +**NEW PRODUCTS** for the 8th consecutive year

REFRIGERATION TRANSPORT & COMMERCIAL

FIRE & SECURITY PRODUCTS & FIELD

KEY POINTS

- Significant energy savings in data centers are possible using system level optimization 10%-30% depending on weather and load conditions
- Model-based discrete MILP optimization and dynamic analysis is key to understand energy savings
- Operate equipment at peak efficiency and use free cooling chiller staging and set-point optimization

FROM EQUIPMENT TO SYSTEM OPTIMIZATION

LITO SYSTEM ARCHITECTURE LAYERS

Protocols between communicating layers
Interfaces connecting modules within a layer
HMI

CASE STUDY: ENERGY OPTIMIZATION FOR DATA CENTER IN FRANKFURT, GERMANY

OBJECTIVES:

- Minimize total energy consumption through a year – 8760 hours
- Meet load requirement
- Consider OAT based on geography

WHAT TO OPTIMIZE?

- Chillers on/off choices and cooling capacity set point
- Leaving chilled water temperature (LWT) setpoint

MODELING ASSUMPTIONS:

- 30XF BOLT chiller model + equipment performance from data sheets
- Steady-state models

SYSTEM ARCHITECTURE

- 12 30XF chillers (air-cooled)
- 4x24 = 96 AHUs (200 kW each) for IT equipment
- 4 IT rooms (floors)

CHILLER STAGING OPTIMIZATION WORKFLOW

1 EXHAUSTIVES SIMULATIONS → BOLT steady state model

2 PERFORMANCE MAPS

USER REQUIREMENT → Load profile & weather data

4 PREPROCESS → Create and compute piece-wise linear functions

MILP OPTIMIZATION → Set, parameters, variables, objectives and constraints

POSTPROCESS → Energy analysis of optimization and baseline energy assumption & results visualization

CASE STUDY LOAD AND WEATHER DATA

Constant load:

- 25%
- 50%
- 75%
- 90%

Variant load:

- 25%
- 50%
- 75%
- 90%

Results:

Frankfurt

STAGING OPTIMIZATION VS. BASELINE & STAGING RESULTS COMPARISON

Total energy consumption % difference between staging optimization and baseline

Averaged energy saving: 22,9%

STAGING RESULTS COMPARISON

- Optimized solution tends to run more chillers than baseline staging rules.
- Optimized staging varies more frequently than baseline at low load condition.
- Optimized solution tends to run maximum number of chillers at high load condition.

LWT & STAGING OPTIMIZATION VS. BASELINE

Total energy consumption % difference between LWT & staging optimization and baseline

Averaged energy saving: 27,1 %

EER PERFORMANCE COMPARISON AT ALL POINTS

OBSERVATIONS

- Optimized performance avoids "valley" on EER performance map
- Optimized performance tends to use less cooling capacity per chiller, especially at low load condition

BY-MONTH RESULTS ANALYSIS

Frankfurt 50% variant load case

OBSERVATIONS

- Optimization delivers higher EER, higher fraction of free cooling and consumes less energy than baseline
- EER improvement is more obvious at colder months.
- Majority of energy saving comes from warmer months

For any questions MEET US AT

STAND J60