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CARRIER WORLD - WHO ARE WE ?

World leader in air conditioning, heating, ventilation, control and automation systems.
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KEY POINTS

c Significant energy savings in data centers are
possible using system level optimization -
10%-30% depending on weather and load
conditions

e Model-based discrete MILP optimization and
dynamic analysis is key to understand energy
savings

e Operate equipment at peak efficiency and use
free cooling — chiller staging and set-point
optimization
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FROM EQUIPMENT TO SYSTEM OPTIMIZATION

DATA CENTERS TECHNICAL SALES > OPPORTUNITIES — SYSTEMS
SUPPORT TOOL INTEGRATION

Deliver high
performance controls

Customers
requirements

Flawless entry

Annual operating into service

cost — power
utilization efficiency

Automated system
configuration selection

Service to maintain

Modular chiller performance

configuration
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LITO SYSTEM ARCHITECTURE LAYERS
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CASE STUDY : ENERGY OPTIMIZATION FOR DATA CENTER IN FRANKFURT, GERMANY
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OBJECTIVES :

* Minimize total energy consumption through a
year — 8760 hours

* Meet load requirement

» Consider OAT based on geography

WHAT TO OPTIMIZE ?

« Chillers on/off choices and cooling capacity set
point

* Leaving chilled water temperature (LWT) set-
point

MODELING ASSUMPTIONS :

» 30XF BOLT chiller model + equipment
performance from data sheets

« Steady-state models
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SYSTEM ARCHITECTURE

* 12 30XF chillers (air-cooled)

*  4x24 =96 AHUs (200 kW
each) for IT equipment

* 41T rooms (floors) 4
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CHILLER STAGING OPTIMIZATION WORKFLOW

BP  EXHAUSTIVES SIMULATIONS > BOLT steady state model

PERFORMANCE MAPS

USER REQUIREMENT - Load profile & weather data

PREPROCESS - Create and compute piece-wise linear functions

MILP OPTIMIZATION - Set, parameters, variables, objectives and constraints

POSTPROCESS - Energy analysis of optimization and baseline energy assumption & results visualization
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CASE STUDY LOAD AND WEATHER DATA

capped at max system load = 20000 kW (UB: +2.9% of base
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STAGING OPTIMIZATION VS. BASELINE & STAGING RESULTS COMPARISON

Total energy consumption % difference between staging optimization and baseline
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Averaged energy
saving : 22,9%
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STAGING RESULTS COMPARISON

* Optimized solution tends to run more chillers than baseline staging rules.
* Optimized staging varies more frequently than baseline at low load condition.
* Optimized solution tends to run maximum number of chillers at high load condition.
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LWT & STAGING OPTIMIZATION VS. BASELINE

Total energy consumption % difference between LWT & staging optimization and baseline
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Averaged energy
saving : 27,1 %
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EER PERFORMANCE COMPARISON AT ALL POINTS
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BY-MONTH RESULTS ANALYSIS
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OBSERVATIONS

¢ Optimization delivers higher
EER, higher fraction of free
cooling and consumes less
energy than baseline

* EER improvement is more
obvious at colder months.

* Majority of energy saving comes
from warmer months
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For any questions

MEET US AT

STAND J60



